skip to main content


Search for: All records

Creators/Authors contains: "Birchall, Jonathan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. 15 N spin–lattice relaxation dynamics in metronidazole- 15 N 3 and metronidazole- 15 N 2 isotopologues are studied for rational design of 15 N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15 N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14 N nucleus within the spin-relayed 15 N– 15 N network. 
    more » « less
  3. Abstract

    Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4–8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin‐exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as129Xe. Techniques based on hyperpolarized129Xe are poised to revolutionize clinical lung imaging, offering a non‐ionizing, high‐contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized129Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized129Xe to lung imaging and beyond.

     
    more » « less
  4. Abstract

    Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4–8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin‐exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as129Xe. Techniques based on hyperpolarized129Xe are poised to revolutionize clinical lung imaging, offering a non‐ionizing, high‐contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized129Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized129Xe to lung imaging and beyond.

     
    more » « less